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The direct gyroscopic stabilizers used to reduce the rolling of vessels 
and to stabilize various unstable objects are also applied as stabilizers 
of platforms on ships and on planes. This paper investigates motions of 
direct ggroscopic stabilizers of the passive and of the active kind under 
the condition of irregular rolling of ships and presents an estimate of 
the accuracy of stabilization when the rolling is a stationary random 
phenomenon. 

1. T#e passive gyrsscopfc stabilizer for irregdor ship-roiling. The 
equations of motion of a passive gyroscopic stabilizer for a rolling 
ship are as follows [ 1 1: 

Aa” i_ mu’ + Hf3’ + Pa = cd” -j- nd’ (d$ r) 
B$” f Ef3’ - Ha’ -+- $J = 0 (1.1) 

Here a is the rotation angle of the gyro-stabilizer’s outer frame 
about its axis, p is the rotation angle of the gyro-stabilizer’s inner 
frame (gyrocamera) about its axis, 8 is the angle of the ship’s roll, A 
and B are the respective moments of inertia, H is the gyroscope’s angular 
momentum, a and B are coefficients of viscous friction. IP is the static 
moment of the gyro-stabilizer’s outer frame, K is the rigidity of the 
spring connecting the gyro-stabilizer’s inner frame (gyrocamera) with 
the outer frame, f is the distance between the center of the ship’ s roll 
and the axis of the gyro-stabilizer. ge shall introduce the fOllOring 
matrices: 
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(1.3) 

The system of scalar differential equations (1.1) can be replaced by 
the matrix equation 

From Equation 

f (D) Y = e P)0 @I 

(1.4) we obtain 

(1.4) 

F (Q e PI 
Y= A PI 

6 (t) = Y (0) 6 (t) 

where the matrix F(D) is the adJoint of the matrix f(D) 

F(D)= 
Dz++D++ 

D2 + 

(1.5) 

(~4 

and A(D) is the determinant of the matrix f(D) 

AD = Da + (cl+ c2) DS + (n? + n2 + q2 + %Gz)D* + (5maa -I- 5&)D -t-m2nz2 

Here 

(1.7) 

1P H2 
n12 = - 

A ' 
n22= ?- 

B' 
42=x, (W 

The quantities a1 and a2 are the frequencies of free vibrations of the 
gyro-stabilizer’s outer frame and of the inner frame (gyrocamera), re- 
spectively, when H = 0, that is, when the gyroscope’s rotor does not 
spin. For sufficiently large values of H the frequency of the nutational 
vibrations of the system is close to q, and the frequency of the pre- 
cessional vibrations is close to 

It is seen from the Hurwitz condition that all zeros of the polynomial 
(1.7) are located in the left halfplane of the complex variable D. 

Aacording to (1.5) the aatrix transfer function Y(D) has the form 

1 
w=~ ii 

(IF -t 520 + n22) (a'D2 -t- 5l.W 

pa'D8 $ p&D2 
(y=a A , p = g 

> 
(1.10) 

According to (1.5) and (1.10) the angles a and ,6 which are the rota- 
tion angles of the outer and of the inner frames of the gyro-stabilizer. 
respectively, can be determined through the operator expressions 
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u = Yll (D) 0 (r)= A (D) 1 fa"P f (cl+ d&&)D2 + (5152 + a'n22)P + :ln22DlB(q (l.ll) 

B=Yz1(Q~(t)= ,?\(Q ~(@u*P + @{ID*)0 (t) (l.12) 

The varfances a -2 ands 2 of the stabilization angle and of the gyro- 
camera’ 8 rotation augle, respectively, equal 

1 O” co 

UT= - 
2n s 

j YII (io) I2 SI (WI dw, B” = -&_\,J YZI (ia) I’s, (0) do (1.13) 
---Do 

where S1(o) is the spectral density of the angle of roll which has the 
form 121 

(1.14) 

Expression (1.13) can be transformed into 

where 

1 9” co 

I6 = -$g I g (4 
h (iw) h (- io) doe J& * s G (io) 

h (io) h f- iw) do (1~16) 
--CO --oo 

g (iw) = b0 ( iofl“ + bl (io)* + bz (io)” + bs (ia)* + 64 ( i~)~ + ba 
G (io) = B0 (io)‘O + BI (io)@ + Bz (io)” + Bs (ir~)~ + B4 (i~)~ + B6 (1.17) 
h (io) = a0 (i~)~ + al (i61)~ + a2 (io)’ + as (i~)~ + a4 (i01)~ + ati (iw) + 00 

and the ooeffiaients in the polynomials (1.17) are 

bo = 0, bl = 0, ba = 2a%Q - 51% - ae2&,% 
bs = @&* - 21;1zn2a + a*an24, b4 = - &Gts4, bs = 0 (1.18) 

B. = 0, BI = 0, B2 = -paa*2, Ba = p2c12, B4 = 0, Bs = 0 

ao= 1, al = 2P + 51 + 52 
a2 = y2 + 2p (51 + &I + m2 + n22 + q2 + 5152 

6x3 = y2 (51 + S2) + 2P W + n2' + 4' + &3 + Cm22 + bm2 

a-4 = + (m2 + n22 + 42 + 45152) + & &na" + 52812) + n12n22 {l.49) 

ab = v2 (fm2 3-5 m2) + 2~tn1~rz~~ 
aa = Y2n12rl~2 

In the case when all the zeros of the polynomial h(D) are located on 
the left halfplane of the complex variable D, then acoording to Phillips 
[ 3 f the integrals (1. IS) have the following form: 

M” 
16=-2a,N’ (1.20) 
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where 

al a0 0 0 0 0 
a3 a2 al ao 0 0 
as a4 a3 a2 al a0 

0 a6 US a4 as a2 

0 0 0 ~26 a6 a4 

0 0 0 0 0 aa 

(1.21) 

and II* and I+* are determinants obtained by interchanging in the deter; 
minant (1.21) the first column by a column whose elements are b, , bl, 

. ..I b5’ or Be, 91, . . . , B,, respectively. 

As an example we shall consider a gyroscopic stabilizer whose para- 
meters have the following values: 

n1 = 1 set -f 51 = 0.6 .e,--f q = 21.2 see -1 

a* = 0.306, -1 9 = 750sec , n2 = O.~S~C-', 52 = 0.4 saeI 

The parameters determining the spectral density of the angle of 
ship’s rolling are taken to be 

-1 p = 0.1 set , 
-1 

v = 0.8 see 

The variance of the angle of roll is L, = 0.09, the standard [mean 
quadratic] deviation of the angle of roll is 8 = d L1 = 0.3. that is, 
about 18O. 

With these numerical data the variances of the stabilization angle 
and of the rotation angle of the gyrocamera are, according to (1.15) 

a2 = 14.10-6, p = 0.13 

The standard deviations of the stabilization angle a* and of the rota- 
tion angle of the gyrocamera 6 * are 

a* = 3.73 . 10-3 z 12.8’, p’ = 0.36 z 20.5” 

If the values of the parameters do not differ much from the values 
used in the above example we can use the following approximate formulas 
for standard deviations of the stabilization angle and of the gyrocamera’s 
rotation angle: 

1 



1160 Icr.N. Roitenberg 

For our example we obtain from Formulas (1.22) 

a’ z 3.76 . IO-S, B’ u, 0.382 

2. Active wroscopic stabilizer for lrremdar ship’s roll. The equa- 
tions of motion of an active wroscopic stabilizer for ship’s roll are 

141 

Aa” + ma’ + H/3’ + ZPa = ~0” 4 m0’ * a = -$- r> 

BP” - Ha’ = My (Mv = Na’ - E/3’) 

Here a is the rotation angle of the outer frame of the 
about its axis, /3 is the rotation angle of the gyrocamera 
8 is the angle of ship’s roll, A and B are the respective 
inertia, R is the angular momentum of the gyroscope, II is 

(2.1) 

gyro-stabilizer 
about its axis, 
moments of 
the coefficient 

of viscous friction, ZP is the static moment of the wro-stabilizer’s 
outer frame, r is the distance between the center of roll and the axis 
of the gyro-stabilizer’s outer frame, NY is the moment about the axis of 
the wrocamera exerted bs an auxiliary electric motor. This motor is con- 
trolled by a gyroscopic tachometer measuring angular velocities of the 
wro-stabilizer’ s outer frame. 

Introducing matrices 

IP 

f (Dl = 
D2+ $-D+T 

Hi-N _p 
B D 

D2++D ! 

a 

e(D)= 
A Dz+$-D 

0 

(24 

(2.3) 

where D = d/dt. we replace the scalar system 
(2.1) by the matrix differential equation 

f CD) Y = e (0 fJ W 

From Equation (2.4) we obtain 

of differential equations 

(2.4) 

F (D) e (D) 
Y= A V’) 

0 (t) = Y (D) 8 (t) 

nhere F(D) is the adjoint matrix of f(D) 

H -- 
AD 

F(D)= 
H-I-N 

B D 
Dz+$D+c 

(2.6) 

and b (D) is the determinant of the matrix f(D) 
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A (D) = DA1 (0) (2.7) 
Al (D) = D8 + (51 + 52) D2 + t&b2 + n2 + 4’) D + 62n2 

Here 

IP 
n2 = - 

H(H+N) 
A ’ 

qz = 
AB ’ 61=$, 52-g (2.8) 

It follows from the Hurwitz condition that all the zeros of the A,(D) 
polynomial are located on the left halfplane of the complex variable 9. 

According to (2.5) the matrix transfer function Y(D) of the system has 
the form 

1 ’ 
y @) = A,(D) I! a’D3 + (51 + C2a*)D2 + C&D a 

pa’iD2 + p&D 
a* = - H+N 

As P=.B- ) (2.9) 

According to (2.5) and (2.9) the rotation angles of the gyrostabilizer 

a and of the gyrocamera @ are 

Cl = Yll (D)e (t) = A1 (D) L [a*D3 + (61 + (2a’) D2 + C&D1 0 (t) 
1 

fi = Y21 (D)W) = Al(D) p(a*D2 + e5lD) fl tz) 

(2.10) 

(2.11) 

Variances 02 the stabilization angle a2 and of the gyrocamera’s rota- 

tion angle /3 2 are 

1 aJ &S = - 
2x s 

( Yll (io) 12Sl(O) b 

--co 

where SI(o) is the spectral density 
according to (1.14). has the form 

4pv2 
81(a) = Ll tw2 _ y2)2 + 4P202 

Expression (2.12) can be transformed into 

a2 = 4@LlZS, B” = 4@2LlJ6 

where 

(2.13) 

of the angle of roll 8, which. 

1 O3 1 Co 
15 = 27 s g (io) 

h (io) h (- io) do’ J5 = K s G (io) 

h (io) h (- i0) do (2.14) 

---co --co 
g (io) = b,, (io)S + bl ( io)s + b2 (io)’ + bs (io)” + b4 

G (iw) = B,, (Co)8 + Bt ( io)e + Bz ( io)4 + Bs ( ioj2 + B4 

h (io) = a0 (io)6 + al (io)’ + a2 (iOY + a3 (io)” $ “4 (f@) + a5 

(2.15) 

and the coefficients of the polynomials (2.151 are 
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b. = 0, bl = -ae2, b2 = (1” + i&2a*2, bs = -c12c2 2, b4 = 0 

I30 = 0, I31 = 0, BZ = ~%*2, B3 = -+!y, I.34 = 0 
(2.16) 

a@= 1, al = 2p + 51 + 52 

32 = 2P (51 + Cd + 5152 -c- v2 + n2 t- 42 

as = .zct (5152 + n2 + q2) + v2 (51 + 52) -I- 52n2 

(2.17) 

aa = v2 (&& + fi2 + 9’) + 2&n’, Ub = <2?kz~2 

According to Phillips [ 3 I the integrals (2.14) have the following 
form: 

(2.18) 

where 

M6* = aobl (asa - a2a5) + aob2 (aoab - alaa) + sobs (ala2 - aoaa) 

.kf5** = uoB2 (aoab - ala4) + aoh (ala2 - aOa3) (2.19) 

As = ao2a62 - 2aoala4as - aoa2ma5 + agdb + &up2 + a1m2as - a&am 

According to (2.13) and (2.18) standard deviations of the stabiliza- 
tion angle of the gyrocamera’s rotation angle are 

(2.20) 

As an example we shall examine a gyroscapic stabilizer, whose para- 
meters have the following values: 

ii = 50kgm set’ 13 = 0.04 kgm sect II = 30 kgm set 

1P =riOkgm, r=3m, N = GOkgm set, 51 = c2 = 0.6 set-’ 

Further. according to (2.21, (2.81, and (2.10) 

n = 1 set-‘, -2 q2 = 135osec , a = 15.3 kgm see’ 
a* = 0.306, p = 2250 set-’ 

The parameters determining the spectral density of the roll will be 
taken as 

/.l = 0.1 see-’ v = 0.8 set-’ 

The variance of the angle of roll is L, = 0.09, the standard devia- 
tion of the angle of roll is 8 * = \/ LI = 0.3. that is, approximately 180. 

For these numerical data the variancAs of the stabilization angle a2 
and of the gyrocamera’s rotation angle p2 are, according to (2.13) 

c2i = 0.66.10-6, $ = 0.106 
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The standard deviations of the stabilization angle and of the gyro- 
camera’s rotation angle are 

a’ = 0.81 .10m3 z 2.8’, fi* = 0.324 z 18.5’ 

Let us mention that if the values of the parameters do not differ 
greatly from those used in our example we can use the following approxi- 
mate formulas for standard deviations of the stabilization angle and of 
the gyrocamera’s rotation angle: 

In our example Formula (2. 21) gives 

LX* z 0.82.10-3, P’ z 0.328 

which agrees very well with the values obtained from the exact formula. 
The approximate formulas (2.21) enable us to estimate the influence of 
each parameter separately. 

Comparing Formula (2.21) with (1.22) we notice that as far as the 
accuracy of stabilization is concerned, the active gyro-stabilizers have 
considerable advantage over the passive ones. 
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